Bankruptcy Prediction with Missing Data
نویسندگان
چکیده
Bankruptcy prediction have been widely studied as a binary classification problem using financial ratios methodologies. When calculating the ratios, it is common to confront missing data problem. Thus, this paper proposes a classification method Ensemble Nearest Neighbors (ENN) to solve it. ENN uses different nearest neighbors as ensemble classifiers, then make a linear combination of them. Instead of choosing k in original k-Nearest Neighbors algorithm, ENN provides weights to each classifier which makes the method more robust. Moreover, using a adapted distance metric, ENN can be used directly for incomplete data. In a word, ENN is a robust and a comparatively simple model while providing good performance with missing data. In the experiment section, four financial datasets which are publicly available are used to prove this conclusion.
منابع مشابه
Knowledge Discovery in the Prediction of Bankruptcy
Knowledge discovery in databases (KDD) is the process of discovering interesting knowledge from large amounts of data. However, real-world datasets have problems such as incompleteness, redundancy, inconsistency, noise, etc. All these problems affect the performance of data mining algorithms. Thus, preprocessing techniques are essential in allowing knowledge to be extracted from data. This work...
متن کاملA Genetic Programming Approach for Bankruptcy Prediction Using a Highly Unbalanced Database
In this paper we present the application of a genetic programming algorithm to the problem of bankruptcy prediction. To carry out the research we have used a database of Spanish companies. The database has two important drawbacks: the number of bankrupt companies is very small when compared with the number of healthy ones (unbalanced data) and a considerable number of companies have missing dat...
متن کاملPredicting Bankruptcy of Companies using Data Mining Models and Comparing the Results with Z Altman Model
One of the issues helping make investment decisions is appropriate tools and models to evaluate financial situation 0f the organization. By means of these tools, investors can analyze financial situation of the organization and identify financial distress or an ideal condition, they become aware of making decisions to invest in appropriate conditions. The main objective of this study is to ev...
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملDesigning a Bankruptcy Prediction Model Based on Account, Market and Macroeconomic Variables (Case Study: Cyprus Stock Exchange)
The development of the Cyprus Stock Exchange together with the increasing trend of investors’ presence in financing activities has led to the importance of this market. In such circumstances, the first step towards a sustainable development of the Exchange is to support the investors. Risk of bankruptcy for the investee is a major challenge that an inexperienced stock investor encounters. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011